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Abstract

Reconstructing pathogen dynamics from genetic data as they become available during an outbreak or epidemic repre-
sents an important statistical scenario in which observations arrive sequentially in time and one is interested in perform-
ing inference in an “online” fashion. Widely used Bayesian phylogenetic inference packages are not set up for this
purpose, generally requiring one to recompute trees and evolutionary model parameters de novo when new data arrive.
To accommodate increasing data flow in a Bayesian phylogenetic framework, we introduce a methodology to efficiently
update the posterior distribution with newly available genetic data. Our procedure is implemented in the BEAST 1.10
software package, and relies on a distance-based measure to insert new taxa into the current estimate of the phylogeny
and imputes plausible values for new model parameters to accommodate growing dimensionality. This augmentation
creates informed starting values and re-uses optimally tuned transition kernels for posterior exploration of growing data
sets, reducing the time necessary to converge to target posterior distributions. We apply our framework to data from the
recent West African Ebola virus epidemic and demonstrate a considerable reduction in time required to obtain posterior
estimates at different time points of the outbreak. Beyond epidemic monitoring, this framework easily finds other
applications within the phylogenetics community, where changes in the data—in terms of alignment changes, sequence
addition or removal—present common scenarios that can benefit from online inference.

Key words: BEAST, Markov chain Monte Carlo, real-time analysis, Bayesian phylogenetics, pathogen phylodynamics,
online inference.

Introduction
Changes in data during ongoing research commonly occur in
many fields of research, including phylogenetics. These typi-
cally include the addition of new sequences as they become
available—for example, during a large sequencing study or
through data sharing—and updates of alignments of existing
sequences, possibly as a result of correcting sequencing errors.
Such changes usually lead to the discarding of results
obtained prior to the revision of the data, and recommencing
statistical analyses completely from scratch (de novo).
Bayesian phylogenetic inference of large data sets can be
very time-consuming, sometimes requiring weeks of comput-
ing time, even when using state-of-the-art hardware. A prom-
ising avenue to mitigate this problem is an online
phylogenetic inference framework that can accommodate
data changes in existing analyses and leverage intermediate
results to shorten the run times of updated inferences.

Existing methods to update phylogenetic estimates in an
online fashion are limited, but the initial concept dates back

to seminal work by Felsenstein (1981), who proposed sequen-
tial addition of species to a topology as an effective search
strategy in tree space. The stepwise addition approach inserts
a new taxon on the branch of the tree that yields the highest
likelihood (Felsenstein 1993), and was among the first heu-
ristics to search for a maximum-likelihood tree topology. This
concept has also been incorporated into the design of various
tree transition kernels and estimation heuristics. For example,
in searching for the optimal tree topology in a maximum-
likelihood framework, Whelan (2007) proposed to first pluck a
number of sequences from an existing tree and subsequently
place each sequence onto the tree where it yields the highest
likelihood value.

Initial developments to update phylogenies with new se-
quence data focused on methods for phylogenetic place-
ment, where unknown query sequences—typically short
reads obtained from next-generation sequencing—are placed
onto a fixed tree precomputed from a reference alignment.
Employing a likelihood-based approach, Matsen et al. (2010)
proposed a two-stage search algorithm to accelerate
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placements for query sequences, where a quick first evalua-
tion of the tree is followed by a more detailed search in high-
scoring parts of the tree. An increasing body of work mainly
targets such taxonomic identification methods, with recent
developments confronting the increasing scalability issues as-
sociated with the high dimensions of modern data sets
(Barbera et al. 2019; Czech et al. 2019).

Izquierdo-Carrasco et al. (2014) implemented an online
framework to estimate phylogenetic trees using maximum-
likelihood heuristics, which automatically extends an existing
alignment when sufficiently new data have been generated
and subsequently reconstructs extended phylogenetic trees
by using previously inferred smaller trees as starting topolo-
gies. The authors compared their methodology to de novo
phylogenetic reconstruction and found a slight but consistent
improvement in computational performance and a similar
topological accuracy.

Recent foundational work toward online Bayesian phylo-
genetic inference focuses on sequential Monte Carlo (SMC)
methods to update the posterior distribution (Dinh et al.
2018; Fourment et al. 2018; Everitt et al. 2020). These methods
approximate a posterior distribution using a set of particles
that exist simultaneously, which are updated when new data
arrive and are then resampled with weights determined by
the unnormalized posterior density (Doucet et al. 2001).
While SMC methods are not new to Bayesian phylogenetics,
they have primarily been explored to increase computational
efficiency in standard inference, for example, to infer rooted,
ultrametric (Bouchard-Côt�e et al. 2012), and nonultrametric
phylogenetic trees (Wang et al. 2015, 2020). Within an SMC
framework, Everitt et al. (2020) introduced the use of deter-
ministic transformations to move particles effectively be-
tween target distributions with different dimensions and
applied this methodology to infer an ultrametric phylogeny
of a bacterial population from DNA sequence data. A similar
methodology was developed independently and almost si-
multaneously by Dinh et al. (2018), who also describe impor-
tant theoretical results on the consistency and stability of
SMC for online Bayesian phylogenetic inference. Building
upon the work of Dinh et al. (2018), Fourment et al. (2018)
showed that the total time to compute a series of unrooted
phylogenetic trees as new sequence data arrive can be re-
duced significantly by proposing new phylogenies through
guided proposals that attempt to match the proposal density
to the posterior. All of these SMC approaches focus on the
tree inference problem rather than the estimation of broader
phylogenetic models where the goal is to marginalize these
over plausible trees. They have also not yet led to implemen-
tations in widely used software packages for Bayesian phylo-
genetic inference.

The need for online phylogenetic inference is especially
pressing in the growing field of phylodynamics (see, e.g.,
Baele et al. 2016, 2018 for an overview). Phylodynamic infer-
ence has emerged as an invaluable tool to understand out-
breaks and epidemics (Pybus et al. 2012; Faria et al. 2014;
Worobey et al. 2014; Nelson et al. 2015; Dudas et al. 2017;
Metsky et al. 2017), and has the potential to inform effective
control and intervention strategies (Al-Qahtani et al. 2017;

Dellicour et al. 2018). Importantly, phylodynamic analyses of
pathogen genome sequences sampled over time reveal events
and processes that shape epidemic dynamics that are unob-
served and not obtainable through any other methods. The
Bayesian Evolutionary Analysis by Sampling Trees (BEAST)
version 1 software package (Suchard et al. 2018) has become
a primary tool for Bayesian phylodynamic inference from ge-
netic sequence data, offering a wide range of coalescent, trait
evolution and molecular clock models to study the evolution
and spread of pathogens, as well as potential predictors for
these processes.

Recent advances in portable sequencing technology have
led to a reduction in sequencing time and costs, enabling in-
field sequencing and real-time genomic surveillance as an
outbreak unfolds. This was demonstrated during the recent
Ebola epidemic in West Africa (Arias et al. 2016; Quick et al.
2016), as well as the recent Zika outbreak in the Americas
(Faria et al. 2017). Notably, Quick et al. (2016) were routinely
able to sequence Ebola-positive samples within days of col-
lection, and in some cases were able to obtain results within
24 h. Such a continuous stream of new sequence data creates
the potential for phylodynamic inference to take up a more
prominent role in the public health response by providing up-
to-date, actionable epidemiological and evolutionary insights
during the course of an ongoing outbreak. Bayesian modeling
naturally accommodates uncertainty in the phylogeny and
evolutionary model parameters, and therefore offers a coher-
ent inference framework for relatively short outbreak time-
scales for which the phylogeny may not be well-resolved.

However, the potential of phylodynamic methods in real-
time epidemic response can only be fully realized if accurate
up-to-date inferences are delivered in a timely manner. Fast
maximum-likelihood-based methods, such as those adopted
by Nextstrain (Hadfield et al. 2018), can provide rapid updates
by relying on a pipeline of fast, but less rigorous heuristic
methods (Sagulenko et al. 2018). Bayesian phylodynamic
models rely on MCMC estimation procedures that can
have very long run times, often requiring days or weeks to
infer the posterior distribution for complex models. Having to
restart these time-consuming procedures when new data
become available thus represents a significant impediment
to providing regular, updated phylodynamic inferences.

Here, we explore an approach that is conceptually simpler
than SMC and consists of interrupting an ongoing MCMC
analysis upon the arrival of new sequence data and after the
current analysis has converged, placing the new sequences at
plausible locations in the current tree estimate, and then
resuming the analysis with the expanded data set. We apply
this methodology to data from several time periods through-
out the West African Ebola virus epidemic of 2013–2016 and
show that resuming an interrupted analysis after inserting
new sequences into the current tree estimate, as opposed
to restarting from scratch, reduces the time necessary to con-
verge to the posterior distribution. Specifically, our approach
virtually eliminates the MCMC burn-in when computing
updated inferences that incorporate new data sequenced
during a subsequent epidemiological week (epi week, labeled
1–52). This improved efficiency will allow the analysis and
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interpretation to more closely maintain a real-time relation-
ship to the accumulation of data.

New Approaches
We present an online phylogenetic inference framework,
implemented in the BEAST 1.10 software package, that allows
incorporating new data into an ongoing analysis. Notably, this
methodology efficiently updates the posterior distribution
upon the arrival of new data by using previous inferences
to minimize the burn-in time (the time necessary for the
MCMC algorithm to converge to the posterior distribution)
for analysis of the expanded data set that includes the new
data (along with the previously available data). Additionally,
our implementation includes a new feature for BEAST 1.10
that enables resuming an MCMC analysis from the iteration
at which it was terminated (similar to the “stoppb” feature in
the Bayesian phylogenetics package PhyloBayes; Lartillot et al.
2009).

When new sequence data become available and the cur-
rent BEAST analysis has converged to the target distribution,
the BEAST analysis is interrupted and a draw (featuring esti-
mates of all model parameters) is taken from its posterior
sample. We insert the new sequences into the phylogenetic
tree estimate obtained from the draw in a stepwise fashion,
where the location of each insertion is determined by com-
puting the genetic distance between the new sequence and
the taxa in the tree. Next, we impute plausible values for new
model parameters that are necessitated by the increased di-
mensionality of the enlarged phylogenetic tree, such as
branch-specific evolutionary rates. Parameter values for mod-
els unaffected by the increased data dimensionality are left
unchanged. The BEAST analysis is then resumed with the
simulation of an MCMC sample with starting parameter val-
ues that have been constructed from the aforementioned
imputation and sequence insertion algorithm. Further, the
resumed analysis employs a stored set of MCMC transition
kernels that have been optimized for efficient sampling using
BEAST’s autotuning functionality.

To determine the performance of this framework, we care-
fully assess the reduction in time required to converge to the
target posterior distribution by using both visual analyses of
MCMC trace plots as well as a scripted sliding window ap-
proach to determine burn-in. The various steps of this ap-
proach are described in more detail in Materials and
Methods. We provide BEAST XML input files for the analyses
performed throughout this article as well as a tutorial on
setting up these analyses at http://beast.community/online_
inference.html. The tutorial also describes how to set up an
MCMC analysis so that it can be resumed from the iteration
at which it was terminated. This new feature in BEAST 1.10
will be useful in general (beyond an online inference setting),
for example, in the case of a computer crash, or if an MCMC
analysis needs to be run for longer to generate sufficient
samples.

Results
We evaluate the performance of our BEAST 1.10 online in-
ference framework by analyzing complete genome data from
the West African Ebola virus epidemic of 2013–2016. The
data comprise 1,610 whole genome sequences collected
throughout the epidemic, from March 17, 2014 to October
24, 2015 (Dudas et al. 2017). Each sequence is associated with
a particular epi week during which the sample was obtained,
allowing us to recreate a detailed data flow of the actual
epidemic. For the purpose of our performance comparisons,
we assume that the genome data were made available im-
mediately after the time of sampling, allowing us to assess
potential efficiency gains in a scenario where a Bayesian phy-
lodynamic reconstruction would be attempted once per epi
week, incorporating the newly obtained genome data into
the inference up to the previous epi week.

Although our previous study on these data was performed
toward the end of the epidemic (Dudas et al. 2017), during
this work we were still confronted with new genome sequen-
ces becoming available, requiring us to frequently restart our
MCMC analyses de novo. Considering the size of the data set,
this required tremendous computational effort to obtain
updated results. Here, we evaluate our online procedure by
computing updated inferences corresponding to increases in
data during consecutive epi weeks at different time points
during the epidemic. For each time point we consider two
consecutive epi weeks, which we shall refer to as the first and
second epi weeks in this context. We analyze the cumulative
data available by the end of the second epi week using two
methods: Our proposed online inference framework which
augments a previous analysis with newly obtained data (see
Materials and Methods), and a de novo analysis using a ran-
domly generated starting tree and default starting values for
the model parameters following a typical Bayesian phyloge-
netic analysis. We use a slightly different phylodynamic model
setup than in our previous study (Dudas et al. 2017), that is,
an exponential growth coalescent model as the prior density
on trees (Griffiths and Tavar�e 1994), and an HKYþC4 sub-
stitution model (Hasegawa et al. 1985; Yang 1996) for each of
the four nucleotide partitions (the three codon positions and
the noncoding intergenic regions) with different relative rates
across the partitions. Evolutionary rates were allowed to vary
across branches according to an uncorrelated relaxed molec-
ular clock model with an underlying log-normal distribution
(Drummond et al. 2006). The overall evolutionary rate was
given an uninformative continuous-time Markov chain
(CTMC) reference prior (Ferreira and Suchard 2008), whereas
the rate multipliers for each partition were given a joint
Dirichlet prior. The BEAST 1.10 XML files used in our analyses
are available at http://beast.community/online_inference.
html.

We consider five different pairs of consecutive epi weeks
from the 2013 to 2016 Ebola epidemic: Epi weeks 25 and 26 of
2014, epi weeks 30 and 31 of 2014, epi weeks 41 and 42 of
2014, epi weeks 1 and 2 of 2015, and the final epi weeks 41
and 42 of 2015. These sets of epi weeks constitute a relatively
broad range of possible sequence addition scenarios, as they
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occurred during the actual epidemic. We provide details on
the number of sequences for these scenarios in table 1 and
figure 1. As a Markov chain constitutes a stochastic process,
for each time point, we perform five independent replicates
of a standard de novo analysis of the data available by the end
of first epi week, five independent replicates of a standard de
novo analysis of the data available by the end of the second
epi week, and five independent replicates of an online analysis
of the data available by the end of the second epi week. Note
that each online analysis proceeds by updating inferences
from one of the de novo analyses of the data available by
the end of the first epi week. We examine split frequencies for
tree samples from independent replicates to compare repli-
cates and ensure convergence to the same posterior

distribution (see supplementary material, Supplementary
Material online). In particular, in all analyses we observe an
average standard deviation of split frequencies (ASDSF) that
meets the guideline of being <0.01 (see Materials and
Methods). The replicates are independent in that the
MCMC simulations start from different trees. In particular,
standard de novo analyses use randomly generated starting
trees, and online analyses feature starting trees that differ
because they are constructed by augmenting different tree
estimates from different de novo analyses of the data available
by the end of the first epi week. For each time period, we
determine a random order for the new sequences and insert
them into the tree estimate in the same order for each of the
five replicates.
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FIG. 1. Comparison of burn-in resulting from standard de novo analyses versus online Bayesian analyses to compute updated inferences from data
taken from different time points of the West African Ebola virus epidemic. The data flow of the epidemic, in terms of total sequence available
during each epi week, is recreated in the background of the plot in gray bars. Dark gray bars show the data corresponding to the five time points at
which we compute updated inferences. The plots chart the burn-in required by de novo analyses, represented by circles, and online analyses,
represented by diamonds. Solid lines correspond to burn-in estimates based on visual analyses of trace plots whereas dotted lines correspond to
burn-in estimates based on maximizing ESS values.

Table 1. Reduced Burn-In (in millions of iterations) Achieved with Online Bayesian Phylodynamic Inference.

Sequences Standard Analysis Online Analysis

Data Total Added Burn-In (G) Burn-In (ESS) Burn-In (G) Burn-In (ESS)

2014, Epi week 26 158 13 0.2 (<0.1) <0.1 (<0.1) <0.1 (<0.1) <0.1 (<0.1)
2014, Epi week 31 240 8 0.8 (0.3) <0.1 (<0.1) <0.1 (<0.1) 0.4 (0.9)
2014, Epi week 42 706 32 8.6 (2.1) 10.2 (10.3) 0.6 (0.9) 1.0 (1.0)
2015, Epi week 2 1,072 24 16.4 (7.3) 17.6 (7.1) 0.6 (0.5) 0.4 (0.5)
2015, Epi week 42 1,610 2 49.6 (20.6) 60.2 (15.4) <0.1 (<0.1) 0.6 (1.3)

NOTE.—Comparison of burn-in for the log joint density sample resulting from two different analysis methods applied to Ebola virus data taken from the West African Ebola
epidemic of 2013–2016. The standard de novo approach of analyzing the full data set from scratch is compared with the online inference approach that updates inferences from
the previous epi week upon the arrival of new data. The length of burn-in (in millions of states) is determined through a graphical approach (G) that consists of analyzing
posterior trace plots, as well as by computing the amount of discarded burn-in that maximizes the ESS. Results are averaged over five replicates for each analysis, with standard
deviation in parentheses.
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For each pair of consecutive epi weeks, we compare the
burn-in for the sample of the log joint density (which is pro-
portional to the posterior density) resulting from online and
standard de novo analyses. Figure 1 and table 1 show the
results, averaged over five replicates. The different methods of
determining the burn-in (see Materials and Methods) yield
very similar estimates. We assess the sensitivity of sequence
insertion order by performing five additional replicates each
for epi weeks 41 and 42 of 2014 and epi weeks 1 and 2 of 2015.
Each of the additional replicates for a given time period aug-
ments the same inferences through a different, random se-
quence insertion order. We find that the estimated burn-in
for each additional replicate is in line with the burn-in esti-
mate for the corresponding time period in table 1, lying
within two standard deviations of the mean.

The results show that our online inference framework can
reduce burn-in by a significant amount (P-values are <0.01
for t-tests comparing burn-in from online and standard anal-
yses for the latter three epi weeks). Although the burn-in for
epi weeks 26 and 31 of 2014 is negligible in both online and
standard analyses, the standard approach requires substantial
burn-in in the latter three cases. By reducing the average
burn-in to one million iterations or less for each of these three
epi weeks, the online approach virtually eliminates the burn-

in in these analyses. The results for epi week 42 of 2015 data
are particularly remarkable (see supplementary figs. S1–S3,
Supplementary Material online for a comparison of posterior
trace plots from five replicates of all test cases), showing av-
erage reductions of burn-in by 50–60 million iterations.

To put these efficiency gains into perspective, it is useful to
translate the reduction of burn-in into actual saved comput-
ing time using a multi-core CPU (in our case, a 14-core
2.20 GHz Intel Xeon Gold 5120 CPU) as well as using a
state-of-the-art hardware setup enhanced by a GPU (e.g., a
Tesla P100 graphics card intended for scientific computing).
We use BEAGLE 2.1.2 (Ayres et al. 2012) to enable such GPU
computation within BEAST. Figure 2 depicts the savings in
computation time by using online inference as compared
with standard de novo analyses to update inferences for
data from different time points in the West African Ebola
virus epidemic. Dunn tests (Dunn 1961) indicate that the
savings under online inference for each time point are signif-
icant (P< 0.01). We note that running time depends on
burn-in length as well as data set size, with larger data sets
requiring more time per iteration. Our online inference ap-
proach leads to higher computation time savings as the com-
plexity of the data increases, with up to 600 h being saved on
average on a modern multi-core processor. State-of-the-art
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FIG. 2. Box plots show distribution of savings in computation time by using online inference as compared with standard de novo analyses to update
inferences for data from different time points in the West African Ebola virus epidemic. White box plots correspond to analyses using a Tesla P100
graphics card for scientific computing and gray boxes correspond to analyses using a multi-core CPU. Irrespective of the actual hardware used, the
time savings are substantial with up to 600 h on average saved using our online approach on CPU for our most demanding scenario. The axis
corresponding to running time (in hours) is log-transformed to allow for greater visibility of plots for smaller data sets.
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graphics cards targeting the scientific computing market are
able to reduce this number to 120 h on average of savings, but
such cards may not be readily available, especially in resource-
limited settings.

Discussion
We present a framework for online Bayesian phylodynamic
inference that accommodates a continuous data flow, as ex-
emplified by an epidemic scenario where continued sampling
efforts yield a series of genome sequences over time. This
framework has been implemented in BEAST 1.10, a popular
software package for Bayesian phylogenetic and phylody-
namic inference. Through empirical examples taken from
the 2013 to 2016 West African Ebola epidemic, we show
that our online approach can significantly reduce burn-in
and, consequently, the time necessary to generate sufficient
samples from the posterior distribution of a phylodynamic
model being applied to a growing data set. The savings in
computation time can amount to days or even weeks,
depending on the computational infrastructure, the com-
plexity of the data and hence also the accompanying phylo-
dynamic model.

The improvements in computational efficiency through
minimizing burn-in that we observe are encouraging, but
there is a need to continue improving efficiency in multiple
directions. First, alternative sequence insertion and branch
rate imputation procedures may yield better performance
in certain situations. Desper and Gascuel (2002), for instance,
employ a minimum evolution criterion for stepwise addition
of taxa. As another example, an insertion procedure that
allows new sequences to have insertion times that are deeper
than the root of the current tree estimate may be more
suitable in the case that new sequences are distantly related
to the sequences that already exist in the tree. Under the
current implementation, MCMC transition kernels enable
the insertion point of a new sequence to eventually be repo-
sitioned deeper than the root of the starting tree. However,
allowing a sequence to be directly inserted deeper than the
root may save computational time.

Second, even if burn-in is minimized, generating sufficient
samples from the Markov chain after it has converged to the
posterior distribution can still be very time-consuming. A
popular approach to generate samples more quickly is to
run multiple independent chains, starting from different ran-
dom locations in search space, in parallel and combine the
posterior samples. However, the time saved through such a
strategy depends on the burn-in phase, which must elapse for
each chain before its samples can be used. From this perspec-
tive, the advances of our online framework are especially im-
portant. Another strategy for more efficient sampling is to
evaluate past MCMC performance during pauses to incorpo-
rate new data and make informed adjustments prior to re-
suming the analysis. For instance, transition kernel weights
can be modified to focus on parameters with low ESS values.
Progress can also be made through advances in MCMC sam-
pling that enable more efficient exploration of posterior dis-
tributions. Innovative sampling techniques that have already

shown promise in the context of phylogenetics and are ripe
for further development include adaptive MCMC (Baele et al.
2017) and Hamiltonian Monte Carlo (Neal 2010; Lan et al.
2015; Ji et al. 2019). Finally, the computational performance
will undoubtedly benefit from continued development of
high-performance libraries for phylogenetic likelihood calcu-
lation (Ayres et al. 2019).

The implementation we present here differs from other
recent work on online Bayesian phylogenetic inference, which
relies on SMC to update phylogenies (Dinh et al. 2018;
Fourment et al. 2018; Everitt et al. 2020). Although SMC
represents a principled approach to infer a distribution of
growing dimensions, the SMC-based methods for online
Bayesian phylogenetics are limited to inferring phylogenetic
trees. It would be beneficial to integrate SMC algorithms for
updating phylogenies with MCMC methods to sample other
evolutionary model parameters, and ultimately to implement
a complementary online inference framework in BEAST. Such
an implementation would enable direct comparison of the
current online framework with SMC-based approaches,
allowing researchers to assess the benefits and drawbacks of
each approach and helping to streamline future development
of online Bayesian phylogenetic inference.

Our development has been primarily motivated by epi-
demic scenarios that entail a continuous stream of new se-
quence data becoming available during the course of an
outbreak. In our empirical assessment of the West African
Ebola virus epidemic, we have assumed that the genome data
were made available close to the time of sampling, which
represents the ideal scenario in an outbreak response. In re-
ality, during the epidemic, there was considerable variation in
how rapidly virus genome data were available for analysis.
There were many reasons for this, but even when genomes
were being shared as rapidly as possible, the batch shipping of
samples to high-throughput sequencing centers resulted in a
minimum delay of many weeks (Gire et al. 2014; Park et al.
2015). This changed toward the end of the epidemic as new,
portable, sequencing instruments were installed in Ebola
treatment centers in Guinea and Sierra Leone (Arias et al.
2016; Quick et al. 2016), producing virus genome sequences
from patients within days or hours of a sample being taken.
We expect that the use of such instruments at the point of
diagnosis will increase and the resulting stream of sequence
data will mean that the computational analysis will become
the bottleneck in using the data to inform the response. From
this perspective, the reduction in time necessary to compute
updated inferences on data from the Ebola virus epidemic
through our online inference framework is promising, and
continued efforts to further improve efficiency are crucial.

Beyond computational efficiency, additional development
is needed in order to maximize the potential impact of our
framework as a support tool during outbreaks. The current
implementation must be extended to accommodate more
sophisticated phylodynamic models, especially methods that
integrate sequence data with other epidemiological data to
elucidate different phylodynamic processes (Lemey et al.
2009; Gill et al. 2013; Lemey et al. 2014; Gill et al. 2016). For
many of these models—for example, a phylogeographic
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model for which a sequence from a previously unsampled
location is being added—the addition of novel sequence data
will increase their dimensionality, and methods that augment
the models in an intelligent manner are essential. Adding
sequence data may also require increasingly complex models
to accurately describe the underlying evolutionary processes
as the data set grows (e.g., transitioning from a strict to a
relaxed clock model), a process that should ideally not require
user interactions. This could potentially be addressed by de-
veloping nonparametric Bayesian models for evolutionary
heterogeneity that can dynamically accommodate increasing
model complexity. Finally, we have focused on evaluating the
performance of updating phylogenetic inferences conditional
on pre-aligned sequence data. However, a comprehensive
system for real-time evolutionary analysis will need to include
an alignment step when new sequence data become
available.

Finally, while real-time monitoring of infectious disease
outbreaks has motivated much of our development, we an-
ticipate that our online inference framework will be more
broadly useful, allowing researchers to save precious time in
any context in which new data become available that extend
a previously analyzed data set. Many large-scale sequencing
efforts in a wide range of research fields generate a steady flow
of genomic data sequences, which often involve a phyloge-
netic component, and as such online Bayesian phylogenetic
inference will prove useful beyond the field of pathogen
phylodynamics.

Materials and Methods

Online Bayesian Phylogenetic Inference
Our strategy to increase efficiency through an online infer-
ence framework in BEAST 1.10 builds on using estimates from
a previous MCMC analysis in order to minimize time to con-
vergence to the new posterior distribution. In MCMC simu-
lation, this burn-in period corresponds to a transient phase of
the Markov chain during which the simulated values reflect
the influence of the starting values of the chain and are from
low-probability regions of the target posterior distribution
(Brooks and Roberts 1998). The burn-in period ends once
the chain achieves stationary behavior and has converged
to the posterior distribution. Including simulated values
from the burn-in phase of the chain in approximations of
the posterior distribution can lead to substantial bias and it
has therefore become common practice to discard samples
taken during the burn-in period. Burn-in phases for standard
phylodynamic models on realistic data sets can be extremely
long, and through minimizing burn-in, we can save a poten-
tially large proportion of the computational time usually re-
quired to generate a good posterior sample.

Online inference can be viewed as a series of steps (or
generations) with increasing amounts of data, with each
step consisting of sampling from the posterior distribution
for the model specified at the given step. The model must be
adjusted when transitioning from one step to the next in
order to accommodate the growth in data. Consider an on-
going (or completed) analysis at step i of a data set of Ni

sequences with a phylodynamic model that includes a choice
of substitution model(s) (Jukes and Cantor 1969; Hasegawa
et al. 1985; Tavar�e 1986), a strict or uncorrelated relaxed
molecular clock model (Drummond et al. 2006), and a para-
metric coalescent tree prior (Griffiths and Tavar�e 1994).
Assume that at step i, the analysis has achieved convergence
and has generated samples from the posterior distribution.
Upon the arrival of Miþ1 new sequences, we interrupt the
step i analysis (if it has not yet run to completion), augment
the analysis with the new sequences, and proceed to step
iþ 1, during which we will analyze the expanded data set of
Niþ1 ¼ Ni þMiþ1 sequences.

We take a random draw hi from the posterior sample (i.e.,
excluding the burn-in) generated in step i that consists of
estimates of the phylogenetic tree and all other model param-
eters. Further, BEAST automatically optimizes transition ker-
nel tuning parameters during an MCMC analysis in order to
maximize sampling efficiency (Suchard et al. 2018), and we
extract the optimized tuning parameter values from step i.
We modify the elements of hi in order to obtain h

ð0Þ
iþ1, the

starting model parameter values for the MCMC chain simu-
lated in step iþ 1. The aim in our construction of h

ð0Þ
iþ1 is to

leverage the values of hi to obtain starting parameter values
that are in, or relatively close to, a high-probability region of
the target posterior in step iþ 1, and thereby minimize the
step iþ 1 burn-in phase. This is in contrast to the typical
approach of using default or randomly generated starting
parameter values (including the phylogenetic tree) that can
be very distant from high-probability regions of the posterior.
Such suboptimal starting values are a major cause of long
burn-in periods.

The algorithm to augment hi to h
ð0Þ
iþ1 starts with expanding

the tree from hi by inserting a new sequence into it. The
sequence insertion process is illustrated in figure 3. First we
find the observed sequence already in the tree that is closest
to the new sequence in terms of genetic distance, where
genetic distance is based on a simple nucleotide substitution
model (we refer to this sequence as the closest sequence). We
compute the genetic distance in all analyses using a JC69
model (Jukes and Cantor 1969), but our implementation
also offers an F84 model (Felsenstein and Churchill 1996).

We then insert a common ancestor node for the new
sequence and its closest sequence. To determine the height
at which to insert the new ancestor node, we first translate
the genetic distance d between the two sequences to a dis-
tance dt in units of time by dividing d by the evolutionary rate
associated with the branch leading to the closest sequence.
Further, let tn denote the sampling time (in terms of time
units prior to the present time) of the new sequence, tc the
sampling time of the closest sequence, and tinsert the time at
which we will insert the new ancestor node. Assume, without
loss of generality, that the new sequence has a more recent
sampling time (so that tc> tn). Consider

t� ¼ tc þ
dt � ðtc � tnÞ

2
¼ dt þ tc þ tn

2
: (1)

We set
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tinsert ¼ t�; (2)

(except in special cases, which we discuss shortly) because
this ensures that the placement of the new ancestor node is
consistent with dt in that ðtinsert � tcÞ þ ðtinsert � tnÞ ¼ dt.
Notably, this method of determining the insertion height
allows the new branch to emanate from an external branch
or internal branch, with the latter case accommodating real-
istic insertion of divergent lineages. In certain cases, however,
we use an alternative insertion time because setting tinsert ¼
t� results in tinsert < tc, or a new branch of length 0, or tc

� troot (where troot is the root height of the tree). In these
cases, we let � denote a scalar in the interval (0, 1), let split-
child refer to the child node of the branch that will be split by
the insertion of the new ancestor node, let lb denote the
length of the aforementioned branch, and let tsc denote the
height of the split-child. We then set

tinsert ¼ tsc þ � � lb: (3)

Here, if t� < tc, the split-child is the closest sequence, and
if t� is equal to the height of an ancestral node of the closest
sequence, then this ancestral node’s child is the split-child.
Finally, if t� � troot, the split-child is the child node of the root
that is an ancestor of the closest sequence. See supplementary

algorithm S1, Supplementary Material online for further
details.

Next, the growth of the tree after a sequence insertion
requires branch-specific aspects of the evolutionary model
to assume a greater dimension. In particular, our implemen-
tation allows for specification of either a strict or uncorrelated
relaxed molecular clock model. Under the uncorrelated re-
laxed clock, each branch-specific clock rate is drawn indepen-
dently from an underlying rate distribution (e.g., an
exponential or log-normal distribution). The underlying rate
distribution is discretized into a number of categories equal to
the number of branches, and each branch receives a unique
clock rate corresponding to its assigned category. We impute
clock rates on the branches of the enlarged tree by assigning
branches to rate categories according to a deterministic pro-
cedure described in detail in supplementary material,
Supplementary Material online.

The algorithm continues in this fashion: The remaining
new sequences are inserted into the growing phylogenetic
tree one at a time, and uncorrelated relaxed clock rates asso-
ciated with tree branches are updated after each insertion.
The order of insertion can be specified by the user in the XML
(in the Ebola virus example, a sensitivity analysis detailed in
the Results section suggests that the performance does not

Present

New Sequence

Time Before Present

tntc

Observed Sequence
Genetically Closest 
to New Sequence

tinsert = (dt + tn + tc)/2

length =
(dt + tn - tc)/2

length = (dt - tn + tc)/2

New Ancestor 
Node

FIG. 3. A new sequence is inserted into an existing phylogenetic tree by determining the closest observed sequence (in terms of genetic distance)
already in the tree, and inserting a new ancestor node for the new sequence and its closest sequence. The genetic distance between the new
sequence and its closest sequence is converted into a distance in units of time, dt, by dividing by the evolutionary rate associated with the branch
leading to the closest sequence. To determine the insertion time tinsert of the new ancestor node (in terms of time prior to the present time), we
require ðtinsert � tcÞ þ ðtinsert � tnÞ ¼ dt , where tn is the sampling time of the new sequence, and tc the sampling time of its closest sequence. This
yields tinsert ¼ ðdt þ tn þ tcÞ=2.
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depend on insertion order). Aspects of the model that remain
compatible with an increase in sequence data, such as sub-
stitution model specification, are left unaltered, and the
parameters that characterize these aspects are identical in
both hi and h

ð0Þ
iþ1.

The final part of step iþ 1 is to simulate a Markov chain,
with starting model parameter values h

ð0Þ
iþ1 and initial tuning

parameter values taken, pre-optimized, from step i. We note
that there is no hard-encoded stopping rule, and the termi-
nation of the simulated chain at step iþ 1 is left to the user’s
discretion. The simulation should continue at least until the
chain has achieved stationarity, and until either new data
become available (and the simulation can be interrupted to
incorporate the new data), or a sufficient posterior sample for
inference has been produced. However, there is no need to
completely terminate the chain at step iþ 1 if it is interrupted
to incorporate new data because the step iþ 1 chain can be
resumed after the interruption, and the step iþ 2 simulation
for the expanded data set can be started as an independent
process. Indeed, if step iþ 1 has yet to produce sufficient
posterior samples it may be optimal to resume its simulation
to obtain provisional inferences (that could go toward
informing the response to an outbreak, for instance) while
waiting for the step iþ 2 chain to converge.

Performance
We assess burn-in using two different approaches. First, we
use Tracer (Rambaut et al. 2018), a popular software package
for posterior summarization in Bayesian phylogenetics, to vi-
sually examine trace plots of the posterior distribution. The
earliest iteration after which the plot exhibits stationarity is
taken to be the end of the burn-in period. Second, we use the
R (R Core Team 2018) package coda (Plummer et al. 2006) to
compute the effective sample size (ESS) of the log joint (like-
lihood� prior) density sample after discarding the first n
samples, and we adopt the value of n that yields the maximal
ESS as the burn-in. The ESS is a statistic that estimates the
number of independent draws from the target distribution
that an MCMC sample corresponds to by accounting for the
autocorrelation in the sample (Kass et al. 1998), and the joint
density is often, even by us, called the “posterior” in BEAST.
This is inexact because the joint density is an unnormalized
rescaling of the posterior. Discarding highly correlated burn-in
iterates from the sample leads to a greater ESS and, in effect, a
more informative sample.

We compare the frequencies of splits (or clades) across
multiple independent Markov chains in order to ensure that
the independent replicates for a given time point in the Ebola
virus epidemic converge to the same stationary distribution.
In particular, we compare chains generated by the same
method (standard inference or online inference) and by dif-
ferent methods by considering all possible pairwise compar-
isons for chains corresponding to the same data set. For each
pair of chains, we use the R We There Yet (RWTY) software
package (Warren et al. 2017) to create a plot of split frequen-
cies as well compute their correlation and the ASDSF (Lakner
et al. 2008). As the different chains converge to the same
stationary distribution, the ASDSF should approach 0. We

adopt the guideline that an ASDSF <0.05 (ideally, <0.01)
supports topological convergence (Ronquist et al. 2011).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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